課程描述INTRODUCTION
大數(shù)據(jù)實(shí)戰(zhàn)培訓(xùn)班
· IT人士· 營(yíng)銷副總· 營(yíng)銷總監(jiān)· 中層領(lǐng)導(dǎo)· 其他人員
日程安排SCHEDULE
課程大綱Syllabus
大數(shù)據(jù)實(shí)戰(zhàn)培訓(xùn)班
【課程簡(jiǎn)介】
大數(shù)據(jù)建模與分析挖掘技術(shù)已經(jīng)逐步地應(yīng)用到新興互聯(lián)網(wǎng)企業(yè)(如電子商務(wù)網(wǎng)站、搜索引擎、社交網(wǎng)站、互聯(lián)網(wǎng)廣告服務(wù)提供商等)、銀行金融證券企業(yè)、電信運(yùn)營(yíng)等行業(yè),給這些行業(yè)帶來了一定的數(shù)據(jù)價(jià)值增值作用。本次課程面向有一定的數(shù)據(jù)分析挖掘算法基礎(chǔ)的工程師,帶大家實(shí)踐大數(shù)據(jù)分析挖掘平臺(tái)的項(xiàng)目訓(xùn)練,系統(tǒng)地講解數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)建模、挖掘模型建立、大數(shù)據(jù)分析與挖掘算法應(yīng)用在業(yè)務(wù)模型中,結(jié)合主流的Hadoop與Spark大數(shù)據(jù)分析平臺(tái)架構(gòu),實(shí)現(xiàn)項(xiàng)目訓(xùn)練。結(jié)合業(yè)界使用最廣泛的主流大數(shù)據(jù)平臺(tái)技術(shù),重點(diǎn)剖析基于大數(shù)據(jù)分析算法與BI技術(shù)應(yīng)用,包括分類算法、聚類算法、預(yù)測(cè)分析算法、推薦分析模型等在業(yè)務(wù)中的實(shí)踐應(yīng)用,并根據(jù)講師給定的數(shù)據(jù)集,實(shí)現(xiàn)兩個(gè)基本的日志數(shù)據(jù)分析挖掘系統(tǒng),以及電商(或內(nèi)容)推薦系統(tǒng)引擎。本課程基本的實(shí)踐環(huán)境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。學(xué)員需要準(zhǔn)備的電腦最好是i5及以上CPU,4GB及以上內(nèi)存,硬盤空間預(yù)留50GB(可用移動(dòng)硬盤),基本的大數(shù)據(jù)分析平臺(tái)所依賴的軟件包和依賴庫等,講師已經(jīng)提前部署在虛擬機(jī)鏡像(VMware鏡像),學(xué)員根據(jù)講師的操作任務(wù)進(jìn)行實(shí)踐。本課程采用技術(shù)原理與項(xiàng)目實(shí)戰(zhàn)相結(jié)合的方式進(jìn)行教學(xué),在講授原理的過程中,穿插實(shí)際的系統(tǒng)操作,本課程講師也精心準(zhǔn)備的實(shí)際的應(yīng)用案例供學(xué)員動(dòng)手訓(xùn)練。
【培訓(xùn)目標(biāo)】
1.讓學(xué)員掌握常見的機(jī)器學(xué)習(xí)算法,深入講解業(yè)界成熟的大數(shù)據(jù)分析挖掘與BI平臺(tái)的實(shí)踐應(yīng)用,并以客戶分析系統(tǒng)、日志分析和電商推薦系統(tǒng)為案例,串聯(lián)常用的數(shù)據(jù)挖掘技術(shù)進(jìn)行應(yīng)用教學(xué)。
2.本課程讓學(xué)員充分掌握大數(shù)據(jù)平臺(tái)技術(shù)架構(gòu)、大數(shù)據(jù)分析的基本理論、機(jī)器學(xué)習(xí)的常用算法、國(guó)內(nèi)外主流的大數(shù)據(jù)分析與BI商業(yè)智能分析解決方案、以及大數(shù)據(jù)分析在搜索引擎、廣告服務(wù)推薦、電商數(shù)據(jù)分析、金融客戶分析方面的應(yīng)用案例。
3.本課程強(qiáng)調(diào)主流的大數(shù)據(jù)分析挖掘算法技術(shù)的應(yīng)用和分析平臺(tái)的實(shí)施,讓學(xué)員掌握主流的基于大數(shù)據(jù)Hadoop和Spark、R的大數(shù)據(jù)分析平臺(tái)架構(gòu)和實(shí)際應(yīng)用,并用結(jié)合實(shí)際的生產(chǎn)系統(tǒng)案例進(jìn)行教學(xué),掌握基于Hadoop大數(shù)據(jù)平臺(tái)的數(shù)據(jù)挖掘和數(shù)據(jù)倉庫分布式系統(tǒng)平臺(tái)應(yīng)用,以及商業(yè)和開源的數(shù)據(jù)分析產(chǎn)品加上Hadoop平臺(tái)形成大數(shù)據(jù)分析平臺(tái)的應(yīng)用剖析。
【培訓(xùn)人群】
1.大數(shù)據(jù)分析應(yīng)用開發(fā)工程師
2.大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員
3.大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員
4.大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師
5.大數(shù)據(jù)分析集群運(yùn)維工程師
6.大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員
【詳細(xì)大綱與培訓(xùn)內(nèi)容】
兩個(gè)完整的項(xiàng)目任務(wù)和實(shí)踐案例(重點(diǎn))
1.日志分析建模與日志挖掘項(xiàng)目實(shí)踐
a)Hadoop,Spark,并結(jié)合ELK技術(shù)構(gòu)建日志分析系統(tǒng)和日志數(shù)據(jù)倉庫
b)互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目
2.推薦系統(tǒng)項(xiàng)目實(shí)踐
a)電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目
b)電商購物籃分析項(xiàng)目
Hadoop,Spark,可結(jié)合Oryx分布式集群在個(gè)性化推薦和精準(zhǔn)營(yíng)銷項(xiàng)目。
項(xiàng)目的階段性步驟貫穿到三天的培訓(xùn)過程中,第三天完成整個(gè)項(xiàng)目的原型
培訓(xùn)內(nèi)容安排如下:
時(shí)間
內(nèi)容提要
授課詳細(xì)內(nèi)容
實(shí)踐訓(xùn)練
第一天
業(yè)界主流的數(shù)據(jù)倉庫工具和大數(shù)據(jù)分析挖掘工具
■業(yè)界主流的基于Hadoop和Spark的大數(shù)據(jù)分析挖掘項(xiàng)目解決方案
■業(yè)界數(shù)據(jù)倉庫與數(shù)據(jù)分析挖掘平臺(tái)軟件工具
■Hadoop數(shù)據(jù)倉庫工具Hive
■Spark實(shí)時(shí)數(shù)據(jù)倉庫工具SparkSQL
■Hadoop數(shù)據(jù)分析挖掘工具M(jìn)ahout
■Spark機(jī)器學(xué)習(xí)與數(shù)據(jù)分析挖掘工具M(jìn)Llib
■大數(shù)據(jù)分析挖掘項(xiàng)目的實(shí)施步驟
配置數(shù)據(jù)倉庫工具Hadoop Hive和SparkSQL
部署數(shù)據(jù)分析挖掘工具Hadoop Mahout和Spark MLlib
大數(shù)據(jù)分析挖掘項(xiàng)目的數(shù)據(jù)集成操作訓(xùn)練
■日志數(shù)據(jù)解析和導(dǎo)入導(dǎo)出到數(shù)據(jù)倉庫的操作訓(xùn)練
■從原始搜索數(shù)據(jù)集中抽取、集成數(shù)據(jù),整理后形成規(guī)范的數(shù)據(jù)倉庫
■數(shù)據(jù)分析挖掘模塊從大型的集中式數(shù)據(jù)倉庫中訪問數(shù)據(jù),一個(gè)數(shù)據(jù)倉庫面向一個(gè)主題,構(gòu)建兩個(gè)數(shù)據(jù)倉庫
■同一個(gè)數(shù)據(jù)倉庫中的事實(shí)表數(shù)據(jù),可以給多個(gè)不同類型的分析挖掘任務(wù)調(diào)用
■去除噪聲
項(xiàng)目數(shù)據(jù)集加載ETL到Hadoop Hive數(shù)據(jù)倉庫并建立多維模型
基于Hadoop的大型數(shù)據(jù)倉庫管理平臺(tái)—HIVE數(shù)據(jù)倉庫集群的多維分析建模應(yīng)用實(shí)踐
■基于Hadoop的大型分布式數(shù)據(jù)倉庫在行業(yè)中的數(shù)據(jù)倉庫應(yīng)用案例
■Hive數(shù)據(jù)倉庫集群的平臺(tái)體系結(jié)構(gòu)、核心技術(shù)剖析
■Hive Server的工作原理、機(jī)制與應(yīng)用
■Hive數(shù)據(jù)倉庫集群的安裝部署與配置優(yōu)化
■Hive應(yīng)用開發(fā)技巧
■Hive SQL剖析與應(yīng)用實(shí)踐
■Hive數(shù)據(jù)倉庫表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧
■Hive數(shù)據(jù)倉庫報(bào)表設(shè)計(jì)
■將原始的日志數(shù)據(jù)集,經(jīng)過整理后,加載至Hadoop + Hive數(shù)據(jù)倉庫集群中,用于共享訪問
利用HIVE構(gòu)建大型數(shù)據(jù)倉庫項(xiàng)目的操作訓(xùn)練實(shí)踐
Spark大數(shù)據(jù)分析挖掘平臺(tái)實(shí)踐操作訓(xùn)練
■Spark大數(shù)據(jù)分析挖掘平臺(tái)的部署配置
■Spark數(shù)據(jù)分析庫MLlib的開發(fā)部署
■Spark數(shù)據(jù)分析挖掘示例操作,從Hive表中讀取數(shù)據(jù)并在分布式內(nèi)存中運(yùn)行
第二天
聚類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用
■聚類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:Canopy聚類(canopy clustering)
■K均值算法(K-means clustering)
■模糊K均值(Fuzzy K-means clustering)
■EM聚類,即期望*化聚類(Expectation Maximization)
■以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。
■Spark聚類分析算法程序示例
基于Spark MLlib的聚類分析算法,實(shí)現(xiàn)日志數(shù)據(jù)集中的用戶聚類
分類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用
■分類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用, 包括:Spark決策樹算法實(shí)現(xiàn)
■邏輯回歸算法(logistics regression)
■貝葉斯算法(Bayesian與Cbeyes)
■支持向量機(jī)(Support vector machine)
■以上算法在Spark MLlib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。
■Spark客戶資料分析與給用戶貼標(biāo)簽的程序示例
■Spark實(shí)現(xiàn)給商品貼標(biāo)簽的程序示例
■Spark實(shí)現(xiàn)用戶行為的自動(dòng)標(biāo)簽和深度技術(shù)
基于Spark MLlib的分類分析算法模型與應(yīng)用操作
關(guān)聯(lián)分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用
■預(yù)測(cè)、推薦分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應(yīng)用
■Spark關(guān)聯(lián)規(guī)則挖掘(Apriori)算法及其應(yīng)用
■以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。
■Spark關(guān)聯(lián)分析程序示例
基于Spark MLlib的關(guān)聯(lián)分析操作
第三天
推薦分析挖掘模型與算法技術(shù)應(yīng)用
■推薦算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:Spark協(xié)同過濾算法程序示例
■Item-based協(xié)同過濾與推薦
■User-based協(xié)同過濾與推薦
■交叉銷售推薦模型及其實(shí)現(xiàn)
推薦分析實(shí)現(xiàn)步驟與操作(重點(diǎn))
回歸分析模型與預(yù)測(cè)算法
■利用線性回歸(多元回歸)實(shí)現(xiàn)訪問量預(yù)測(cè)
■利用非線性回歸預(yù)測(cè)成交量和訪問量的關(guān)系
■基于R+Spark實(shí)現(xiàn)回歸分析模型及其應(yīng)用操作
■Spark回歸程序?qū)崿F(xiàn)異常點(diǎn)檢測(cè)的程序示例
回歸分析預(yù)測(cè)操作例子
圖關(guān)系建模與分析挖掘及其鏈接分析和社交分析操作
■利用Spark GraphX實(shí)現(xiàn)網(wǎng)頁鏈接分析,計(jì)算網(wǎng)頁重要性排名
■實(shí)現(xiàn)信息傳播的社交關(guān)系傳遞分析,互聯(lián)網(wǎng)用戶的行為關(guān)系分析任務(wù)的操作訓(xùn)練
圖數(shù)據(jù)的分析挖掘操作,實(shí)現(xiàn)微博數(shù)據(jù)集的社交網(wǎng)絡(luò)建模與關(guān)系分析
神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)算法模型及其應(yīng)用實(shí)踐
■神經(jīng)網(wǎng)絡(luò)算法Neural Network的實(shí)現(xiàn)方法和挖掘模型應(yīng)用
■基于人工神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)的訓(xùn)練過程,傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法
■Deep Learning的訓(xùn)練方法
■深度學(xué)習(xí)的常用模型和方法CNN(Convolutional Neural Network)卷積神經(jīng)網(wǎng)絡(luò)
■RNN(Recurrent Neural Network)循環(huán)神經(jīng)網(wǎng)絡(luò)模型
■Restricted Boltzmann Machine(RBM)限制波爾茲曼機(jī)
■基于Spark的深度學(xué)習(xí)算法模型庫的應(yīng)用程序示例
基于Spark或TensorFlow神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)庫實(shí)現(xiàn)文本與圖片數(shù)據(jù)挖掘
項(xiàng)目實(shí)踐
■日志分析系統(tǒng)與日志挖掘項(xiàng)目實(shí)踐Hadoop,Spark,ELK技術(shù)構(gòu)建日志數(shù)據(jù)倉庫
■互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目
■推薦系統(tǒng)項(xiàng)目實(shí)踐。電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目
項(xiàng)目數(shù)據(jù)集和詳細(xì)的實(shí)驗(yàn)指導(dǎo)手冊(cè)由講師提供
培訓(xùn)總結(jié)
■項(xiàng)目方案的課堂討論,討論實(shí)際業(yè)務(wù)中的分析需求,剖析各個(gè)環(huán)節(jié)的難點(diǎn)、痛點(diǎn)、瓶頸,啟發(fā)出解決之道;完成講師布置的項(xiàng)目案例,鞏固學(xué)過的大數(shù)據(jù)分析挖掘處理平臺(tái)技術(shù)知識(shí)以及應(yīng)用技能
討論交流
【講師介紹】
周老師,男,中國(guó)科學(xué)院通信與信息系統(tǒng)專業(yè)博士。北京郵電大學(xué)移動(dòng)互聯(lián)網(wǎng)與信息化實(shí)驗(yàn)室特聘研究員、對(duì)外經(jīng)貿(mào)大學(xué)信息學(xué)院特聘兼職教師、中國(guó)移動(dòng)集團(tuán)高級(jí)培訓(xùn)講師,長(zhǎng)期從事大數(shù)據(jù)、4G、移動(dòng)互聯(lián)網(wǎng)安全、管理及大數(shù)據(jù)*營(yíng)銷等研究方向。國(guó)內(nèi)*信息系統(tǒng)架構(gòu)師,金牌講師,技術(shù)顧問,移動(dòng)開發(fā)專家。擁有豐富的通信信息系統(tǒng)設(shè)計(jì)、開發(fā)經(jīng)驗(yàn)及培訓(xùn)行業(yè)經(jīng)驗(yàn),先后為全國(guó)超過15家省移動(dòng)公司,超過30家地市移動(dòng)公司有過項(xiàng)目開發(fā)合作及授課,擔(dān)任多個(gè)大型通信項(xiàng)目的總師。
鐘老師,男,博士畢業(yè)于中國(guó)科學(xué)院,獲工學(xué)博士學(xué)位(計(jì)算機(jī)系統(tǒng)結(jié)構(gòu)方向),曾在國(guó)內(nèi)某高校和某大型通信企業(yè)工作過,目前在中國(guó)科學(xué)院某研究所工作,高級(jí)工程師,副研究員,課題組長(zhǎng),團(tuán)隊(duì)成員二十余人。大數(shù)據(jù)、云計(jì)算系列課程建設(shè)與教學(xué)專家,新技術(shù)課程開發(fā)組長(zhǎng)。近八年來帶領(lǐng)團(tuán)隊(duì)主要從事大數(shù)據(jù)管理與高性能分析處理(Hadoop、Spark、Storm)、大數(shù)據(jù)倉庫(HIVE)和實(shí)時(shí)數(shù)據(jù)倉庫(SparkSQL、Shark),大數(shù)據(jù)建模挖掘與機(jī)器學(xué)習(xí)(Mahout、MLib、Oryx、Pentaho BI、SAS、SPSS、R等)、MPP并行數(shù)據(jù)倉庫(Greenplum etc)、NoSQL與NewSQL分布式數(shù)據(jù)庫(Hbase、MongoDB、Cassandra etc)、(移動(dòng))電子商務(wù)平臺(tái)、大數(shù)據(jù)搜索平臺(tái)(ElasticSearch、Solr、Lucene等)、云計(jì)算與虛擬化(OpenStack,VMware,XenServer,CloudStack,KVM,Docker,SaaS服務(wù))、云存儲(chǔ)系統(tǒng)、Swift對(duì)象存儲(chǔ)系統(tǒng)、網(wǎng)絡(luò)GIS地圖服務(wù)器、互聯(lián)網(wǎng)+在線教育云平臺(tái)方面的項(xiàng)目研發(fā)與管理工作。
大數(shù)據(jù)實(shí)戰(zhàn)培訓(xùn)班
轉(zhuǎn)載:http://santuchuan.cn/gkk_detail/35600.html
已開課時(shí)間Have start time
大數(shù)據(jù)課程內(nèi)訓(xùn)
- 數(shù)據(jù)驅(qū)動(dòng)價(jià)值 ——基于Ex 張曉如
- 大數(shù)據(jù)提升:用戶體驗(yàn)提升與 武建偉
- 建材門店--微信獲客與運(yùn)營(yíng) 武建偉
- 能源電力企業(yè)數(shù)字化轉(zhuǎn)型探索 李開東
- 《大數(shù)據(jù)分析與客戶開發(fā)》 喻國(guó)慶
- 《流量神器,銷量升級(jí):如何 武建偉
- 數(shù)據(jù)創(chuàng)造價(jià)值——大數(shù)據(jù)分析 張曉如
- 《銀行--網(wǎng)絡(luò)消費(fèi)行為與網(wǎng) 武建偉
- 互聯(lián)網(wǎng)大數(shù)據(jù)分析管理 孫平
- 《精細(xì)運(yùn)營(yíng)——京東/天貓平 武建偉
- 大數(shù)據(jù)項(xiàng)目解決方案及應(yīng)用 胡國(guó)慶
- 《大數(shù)據(jù)精益化營(yíng)銷思維與運(yùn) 喻國(guó)慶